Ela a Bruhat Order for the Class of ( 0 , 1 ) - Matrices with Row Sum Vector R and Column Sum Vector S ∗ Richard

نویسنده

  • RICHARD A. BRUALDI
چکیده

Generalizing the Bruhat order for permutations (so for permutation matrices), a Bruhat order is defined for the class of m by n (0, 1)-matrices with a given row and column sum vector. An algorithm is given for constructing a minimal matrix (with respect to the Bruhat order) in such a class. This algorithm simplifies in the case that the row and column sums are all equal to a constant k. When k = 2 or k = 3, all minimal matrices are determined. Examples are presented that suggest such a determination might be very difficult for k ≥ 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Matrices with Given Row and Column Sums

Let P = (p,,) and Q = (qij) be m x n integral matrices, R and S be integral vectors. Let Nf(R, S) denote the class of all m x n integral matrices A with row sum vector R and column sum vector S satisfying P < A < Q. For a wide variety of classes ‘%$I( R, S) satisfying our main condition, we obtain two necessary and sufficient conditions for the existence of a matrix in @(R, 5). The first charac...

متن کامل

Ela Subdominant Eigenvalues for Stochastic Matrices with given Column Sums∗

For any stochastic matrix A of order n, denote its eigenvalues as λ1(A), . . . , λn(A), ordered so that 1 = |λ1(A)| ≥ |λ2(A)| ≥ . . . ≥ |λn(A)|. Let cT be a row vector of order n whose entries are nonnegative numbers that sum to n. Define S(c), to be the set of n × n row-stochastic matrices with column sum vector cT . In this paper the quantity λ(c) = max{|λ2(A)||A ∈ S(c)} is considered. The ve...

متن کامل

The Dad Theorem for Arbitrary Row Sums1

Given an m x m symmetric nonnegative matrix A and a positive vector R (ri, • • •, rm), necessary and sufficient conditions are obtained in order that there exist a diagonal matrix D with positive main diagonal such that DAD has row sum vector R. A nonnegative m x n matrix A is called completely decomposable if there exist partitions a a of !l, • • • , m\ and ß., ß2 oí il, • • • , n\ into nonvac...

متن کامل

&mall Diameter Interchange Graphs of Classes of Matrices of Zeros and Ones

Let %I( R, S) denote the class of all m X n matrices of O’s and l’s having row sum vector R and column sum vector S. The interchange graph G( R, S) is the graph where the vertices are the matrices in %(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We characterize those 81 (R, S) for which the graph C( R, S) has diameter at most 2 and those YI( R, S) ...

متن کامل

Discrepancy of Matrices of Zeros and Ones

Let m and n be positive integers, and let R = (r1, . . . , rm) and S = (s1, . . . , sn) be non-negative integral vectors. Let A(R, S) be the set of all m× n (0, 1)-matrices with row sum vector R and column vector S, and let Ā be the m × n (0, 1)-matrix where for each i, 1 ≤ i ≤ m, row i consists of ri 1’s followed by n − ri 0’s. If S is monotone, the discrepancy d(A) of A is the number of posit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004